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 Letter recognition is becoming increasingly more common in the modern world. The use 

cases are seemingly endless. A few examples that have become prominent in recent years are 

autonomous cars being able to read signs, artificial intelligence being able to scan in documents 

and read them, and assistive technology for the visually impaired. The ability for machines to 

recognize letters, whether they are handwritten or printed, allows the further integration of 

machines to increase the efficiency of everyday life for humans. Training machines to do this 

effectively, however, can be a challenging task, however, and if trained incorrectly, could lead to 

great negative consequences. Many letters can look the same, especially if they are presented in 

different fonts, or handwriting that may not be the clearest, thus, and easy way to approach this 

problem is by first training models on binary classifiers, instead of jumping straight to classifying 

a letter out of 26 options. Training and testing multiple classifiers, instead of just one, can 

increase the resilience of letter recognition models because where one classification model may 

fail, another would predict a letter correctly. A rudimentary thought process in examining how 

well a model performs would be to only consider the accuracy of the model and exclaim that 

the one with the highest accuracy score is the best model. Failing to factor in other 

characteristics such as computational complexity would be bad practice. While the accuracy is 

probably the most important characteristic, if two models have near similar accuracy rates, one 



of them being slightly higher, however, was much more computationally complex, leading to 

longer run times and increased resource consumption, it would not necessarily be correct to 

choose the model with the higher accuracy score as the “better” model. Decreasing the 

dimensionality of the models through PCA can be helpful because it can simplify the model, 

increasing speed and decreasing resource consumption, while, if done correctly, maintain 

similar levels of accuracy. Ensuring a proper trade-off between the decrease in accuracy and 

increase in efficiency of the model is important while considering dimension reduction. I chose 

to do a PCA dimension reduction for the classifications. The reason I chose PCA is because the 

variables that remain after the reduction of dimensionality are the most significant for the 

classification problem. For the classification problem where I could choose my own two letters I 

chose ‘U’ and ‘V’. These letters have a very similar shape, and I have gotten the two mixed up 

before, specifically, in handwritten text. I would have guessed that the ML models might have 

trouble in distinguishing between the two letters. I predict the easiest would be H and K 

because they have vastly different shapes.  

The two classifiers I chose to use for the binary classification problems were K-Nearest 

Neighbors and Artificial Neural Networks. KNN is a relatively simple classifier to understand. It 

looks at the data set, and after using some distance metric, it makes its prediction based on the 

data points that are most like the one in question. There is no training phase in a KNN classifier, 

which might lead to faster computations when dealing with real time data. Additionally, it is 

very adaptable to feature changes. However, some disadvantages that come with KNN are it is 

sensitive to noisy data, or irrelevant features; and it requires significant memory storage 

because it needs to access the entire data set during the testing phase. 



The following graphs show the hyperparameter tuning of KNN for each classifier, H and 

K, M and Y, and, U and V respectively. I chose the number of neighbors as my hyperparameter 

for KNN: 

 

 



 

Here is the results from tuning the hyperparameter after the dimension reduction: 

 



 

 

Some advantages that come with ANN is that ANN is well equipped at handling non-

linear data. ANNs are also great at flexibility. They can adjust to input data by adjusting weights, 

which makes it versatile for many different data types and structures. Some disadvantages of 

ANNs are since they are very complex, they have increased risk of overfitting on the data. 

Additionally, training ANNs can be very computationally expensive and time consuming. The 



following graphs show the hyperparameter tuning of ANN for each classifier, H and K, M and Y, 

and U and V respectively. I chose the number of neurons in hidden layer as my hyperparameter 

for ANN: 

 

 

 

 

 

 

 

 

 

 



 

 

Here is the results from tuning the hyperparameter after the dimension reduction: 

 



 

 

 



The performance and runtime table of the three 

classification problems is: 

Classifier Accuracy (H,K) Accuracy (M,Y) Accuracy (V,U) Run Time (H,K) (seconds) Run Time (M,Y) (seconds) Run Time (V,U) (seconds)

kNN 0.938776 1 1 0.011287 0.017131 0.00684

kNN wit PCA 0.877551 0.981013 0.993671 0.009814 0.010659 0.004492

ANN 0.986395 1 0.993671 0.9965 0.674735 0.828071

ANN with PCA 0.897959 0.981013 0.987342 1.486929 0.760097 1.183329  

The model I would choose for this problem would be probably be the kNN without reduction of 

dimensionality. It performed 2nd best behind ANN with an average accuracy rating of 98% and 

average run time of .011 seconds which was also the 2nd best. The ANN model returned a 99.3% 

accuracy, however, the time it took was roughly 7000% longer than the Knn, at 0.83 seconds. 

The tradeoff between accuracy and run time does not seem worth it for only a 1% increase in 

accuracy. The dimension reduction decreased accuracy but also decreased the run time, 

however, in this case, the accuracy to run time trade off did not seem to be worth it. For 

example, for the KNN, average accuracy decreased by roughly 3% while run time only would 

have improved by 30%. At 0.01 seconds, 30% is not worth losing that 3% accuracy for. If I was 

given this same task for another dataset, I would likely investigate exploring the other classifiers 

more deeply. While these classifiers did perform well for this problem, the other one’s may have 

performed even better, and perhaps even more efficiently. As an up and coming data scientist it 

is best to explore all different types of classifiers. Something I am interested in is seeing how 

accurate machine learning classifiers might be at predicting a letter out of  the standard 26 

possibilities. It is easier to make a prediction if there are only two choices, but with 26, which is 

what it would be in the real world, it might limit how successful the models are.  

 


